When does a book become a web platform?

During last week’s CETIS conference I ran a session that assessed how ebooks can function as an educational medium beyond the paper textbook.

After reminding ourselves that etextbooks are not yet as widespread as ebook novels, and that paper books generally are still more widely read, we examined what ebook features make a good educational experience.

Though many features could have been mentioned, the majority were still about the experience itself. Top of the bill: formative assessment at the end of a chapter. Either online or offline, it needs to be interactive, and there need to be a lot of items readily available. Other notable features in the area include a desire for contextualised discussion about a text. Global is good, but chats limited to other learners in a course is better. A way of asking for clarification of a teacher by highlighting text was another notable request.

These features were then compared to what is currently the state of the art. Colin Smythe presented the latest EDUPUB work from IMS, IDPF and the W3C which integrates both VLEs and books, as well as analytics and assessment platforms. The solution is slick, and entirely web based. This contrasts with the solution I demoed before the formal EDUPUB work started. Unlike IMS’ example, my experiment does work in most any ebook software, but it doesn’t include IMS’ Caliper analytics capability.

But then Mick Chesterman of Flossmanuals and Manchester Metropolitan University reminded us that reading features aren’t the only ones worth considering. The open source Booktype platform allows communities to quickly and easily write books collaboratively, and then clone, share or merge them in a process called ‘federated publishing’.

The editability of standard, EPUB format ebooks also introduced the core question: what is the difference between an ebook and a web site? The interactivity and media support that is now possible in ebooks is blurring the distinction, but features such as the possibility of editing could prove a key distinction.

Another distinction, but one that may not persist, is a book’s persistence itself. With more functionality living outside of the book, on servers on the wider internet, how will a book endure? While intermittent connectivity means that offline access is still desirable now, will the ever increasing ubiquity of bandwidth spell the end for self-contained media?

The opening slides.

Colin Smythe’s presentation on EDUPUB.

My own presentation on embedding QTI in EPUB3.

Mick Chesterman’s slides on Booktype.

Using standards to make assessment in e-textbooks scalable, engaging but robust

During last week’s EDUPUB workshop, I presented a demo of how an IMS QTI 2.1 question item could be embedded in an EPUB3 e-book in a way that is engaging, but also works across many e-book readers. Here’s the why and how.

One of the most immediately obvious differences between a regular book and an e-textbook is the inclusion of little quizzes at the end of a chapter that allow the learner to check their understanding of what they’ve just learned. Formative assessment matters in textbooks.

When moving to electronic textbooks, there is a great opportunity to make that assessment more interactive, and provide richer feedback, and connect the learning to a wider view of how a student is doing (i.e. learning analytics). The question is how to do that in a way that works across many e-reading devices and applications, on a scale that works for publishers.

QTI item in Adobe Editions

QTI item in Adobe Editions

Scalability is where interoperability standards like EPUB3, IMS Learning Tool Interoperability (LTI) and IMS Question and Test Interoperability (QTI) 2.1 come in. People use a large number of different software systems in the authoring, management, and playback of e-books. Connecting each of those to all the others with one-off custom integrations just gets too complex, too expensive and too brittle; that’s why an increasing number of publishers and software vendors agreed on the EPUB specification. As long as you implement that spec, solutions can scale across many e-book applications. The same goes for question and test material, where IMS QTI does the same job. LTI does that job for connecting VLEs to any online learning tool.

Which leaves the question of how to square the circle of making the assessment experience as engaging and effective as possible, but also work on devices with very different capabilities.

Fortunately, EPUB3 files can include a number of techniques that allow an author to adapt the content to the capability of the device it is being read on. I used those techniques to present the same QTI item in three different ways; as a static quiz – much like a printed book –, as a simple interactive widget and as a feedback rich test run by an online assessment system inside the book. The latter option makes detailed analytics data available and it should also make it possible to send a grade to a VLE automatically.

The how

QTI item in Apple iBooks

QTI item in Apple iBooks

For the static representation and the interactive widget, I relied on Steve Lay’s rather brilliant transform from QTI XML to HTML5 (and back again), and to make the HTLM5 interactive with some javascript. By including this QTI HTML5 in the EPUB, you get all the advantages of standard QTI, in a way that still works in a simple, offline reader such as Adobe Editions as well as more capable software such as Apple’s iBooks.

For the most capable, online ebook readers such as Readium, the demo e-textbook connects to QTIWorks, an online QTI compliant assessment engine. It does that via IMS LTI 1.1, but in a somewhat unusual way: in LTI terms, the e-book behaves as a tool consumer. That is; like a VLE. Using a hash of an Oauth secret and key, it establishes a connection to QTIWorks, identifies the user, and retrieves the right quiz to show inside the ebook. A place to send the results of the quiz to is also provided, but I’ve not tested that yet. QTIWorks makes detailed report available of what the learner did exactly with each item, which can be retrieved in a variety of machine readable formats.

QTI item in Readium

QTI item in Readium

Because the secret and the key have to be included in the book, the LTI connection the book establishes is not as secure as an LTI connection from a proper VLE. For access to some formative assessment, that may be a price worth paying, though.

The demo EPUB3 uses both scripting and some metadata to determine which version of the QTI item to show. The QTI item, the LTI launch and the EPUB textbook are all valid according to their specifications, and rely on stock readers to work.

Acknowledgements and links

David McKain for making QTIWorks
Steve Lay for the QTI HTML transforms
John Kristian of the OAuth project for the OAuth javascript library
Stephen Vickers for the ceLTIc IMS LTI development tools

The (ugly, content-less) demonstration EPUB3 and associated code is available from Github.

QTI 2.1 spec release helps spur over £250m of investment worldwide

With the QTI 2.1 specification finalised and released, we’re seeing significant global investment in tools that implement the spec. Tools developed by JISC projects have been central.

It has taken a while, but since March this year, IMS Question and Test Interoperability 2.1 has been released as a final specification. That means that people can implement it, secure in the knowledge that it won’t change or disappear, even if there are likely to be future versions.

The release, not coincidentally, happens at a time when there is a lot of activity regarding the use of the specification around the world. This level of investment isn’t just due to a set of documents on a website, it is also due to the fact that there is a range of working implementations available that demonstrate how QTI 2.1 works, and that’s where a couple of Jisc projects play a crucial role. But let’s have a look at what people are doing with the spec around the world first.

The Netherlands

The biggest assessment project in the low lands at the moment is the effort to move all online school exams to the QTI 2.1 format. The multi-million Euro effort is led by the Commissie voor Examens, managed by DUO, with the CITO exam body and trifork as contractors. Because of the specific demands put upon the whole infrastructure, the partners will need an extensive profile.

Accompanying the formal exam profile is the NL-QTI effort led by Kennisnet. This pragmatic but relatively rich profile of the specification is meant to facilitate an eco system of material and software for general use in schools. We should see more of that profile in the near future.

Lastly, Surf is currently running the Assessment and Assessment Driven Learning programme in higher education, which will revolve around a sharable infrastructure for online assessment. Part of that programme will be an exploration to what extent such sharing can be facilitated by QTI 2.1

Germany

The main player here is the Onyx suite from BPS. This complete assessment suite of editor, test player, analytics module and converter is built around QTI 2.1, and has been used standalone as well as integrated with the OLAT VLE. One instance of the latter that is shared between all 13 universities in Saxony has about 50.000 users, with about 25.000 log-ins per day. Similar consortia exist in Thuringia and Rhineland-Palatinate, and there are further university specific installations with a combined total of about a 108.000 users. The hosted Onyx test player runs about 300 – 1000 test runs a day.

France

The work in France is on a smaller scale, but is mature and well targeted. The MOCAH team of UPMC, Paris 6 has developed a system where QTI 2.1 source is transformed such that it can be run on generic Java or PHP based web servers, as well as specialised QTI players. The focus is on the teaching of math to secondary schools students, and it has been used in 160 classes, where 400 patterns have been created. The latter are question item templates that generate large amounts of items for students to practice on; a key requirement.

South Korea

After experiments in the past with, among other tools, QTI 2.1 generated from common word-processing tools, KERIS – the Korea Education and Research Information Service – is now engaging vendors in a project to integrate QTI 2.1 in EPUB 3 ebooks. Various options are being explored at the moment, with results due later this year.

USA

This is where the development-at-scale is taking place at the moment, thanks to the Race To The Top (RTTT) projects that were funded by the Obama administration. There are two state-led consortia – Smarter Balanced and PARCC – with a mission to overhaul the whole assessment infrastructure in schools, base it on open standards and open source software, and provide a tranche of new material to go with it. They had an initial budget of $160-170 million each, with about a third of those budgets intended for tool development. QTI 2.1, along with the Accessible Portable Item Protocol (APIP) extensions, is at the heart of the initiative.

The size of those consortia is having effects elsewhere too. One major educational publisher has already decided to standardise internally on QTI 2.1, and others are looking at the same option. Not that such a thing is new: organisations such as the Northwest Evaluation Association (NWEA) and the world’s largest testing organisation – ETS – have already chosen QTI 2.1 as their internal ‘lingua franca’. Rather than make many point to point integrations between their own systems and collections, and then having to do that again with each organisation they partner with, they translate each format to and from QTI.

UK

Meanwhile, back in the UK, JISC has sponsored a small community – most recently via the Assessment & Feedback programme – that has played a vital role in making QTI 2.1 real. ‘Real’ in the sense of checking whether and how the specification would work, as it was being designed, in the case of Jassess. ‘Real’ also in the sense of putting QTI 2.1 material in the hands of a range of teachers and learners, via editing tools such as Uniqurate and playback tools such as QTIWorks. An excellent RSC Scotland post outlines exactly how those outputs of the QTI-DI and Uniqurate projects work.

All of these UK projects’ tools, guidance and assessment materials are known to all the above communities, as well as plenty of others I’ve not even mentioned. In some cases, the JISC sponsored tools have been extended by others, in other cases, the presence and online accessibility of the resources meant that those other communities knew what was possible, what their own tools and materials should look like, and how they could interoperate.

At this point, it’s not clear whether new Jisc will support future work in this area. What is clear, however, is that JISC’s past investment will continue to have a global effect well beyond the initial outlay.

Doing analytics with open source linked data tools

Like most places, the University of Bolton keeps its data in many stores. That’s inevitable with multiple systems, but it makes getting a complete picture of courses and students difficult. We test an approach that promises to integrate all this data, and some more, quickly and cheaply.

Integrating a load of data in a specialised tool or data warehouse is not new, and many institutions have been using them for a while. What Bolton is trying in its JISC sponsored course data project is to see whether such a warehouse can be built out of Linked Data components. Using such tools promises three major advantages over existing data warehouse technology:

It expects data to be messy, and it expects it to change. As a consequence, adding new data sources, or coping with changes in data sources, or generating new reports or queries should not be a big deal. There are no schemas to break, so no major re-engineering required.

It is built on the same technology as the emergent web of data. Which means that increasing numbers of datasets – particularly from the UK government – should be easily thrown into the mix to answer bigger questions, and public excerpts from Bolton’s data should be easy to contribute back.

It is standards based. At every step from extracting the data, transforming it and loading it to querying, analysing and visualising it, there’s a choice of open and closed source tools. If one turns out not to be up to the job, we should be able to slot another in.

But we did spend a day kicking the tires, and making some initial choices. Since the project is just to pilot a Linked Enterprise Data (LED) approach, we’ve limited ourselves to evaluate just open source tools. We know there plenty of good closed source options in any of the following areas, but we’re going to test the whole approach before deciding on committing to license fees.

Data sources

D2RQ

Google Refine logo

Before we can mash, query and visualise, we need to do some data extraction from the sources, and we’ve come down on two tools for that: Google Refine and D2RQ. They do slightly different jobs.

Refine is Google’s power tool for anyone who has to deal with malformed data, or who just wants to transform or excerpt from format to another. It takes in CSV or output from a range of APIs, and puts it in table form. In that table form, you can perform a wide range of transformations on the data, and then export in a range of formats. The plug-in from DERI Galway, allows you to specify exactly how the RDF – the linked data format, and heart of the approach – should look when exported.

What Refine doesn’t really do (yet?) is transform data automatically, as a piece of middleware. All your operations are saved as a script that can be re-applied, but it won’t re-apply the operations entirely automagically. D2RQ does do that, and works more like middleware.

Although I’ve known D2RQ for a couple of years, it still looks like magic to me: you download, unzip it, tell it where your common or garden relational database is, and what username and password it can use to get in. It’ll go off, inspect the contents of the database, and come back with a mapping of the contents to RDF. Then start the server that comes with it, and the relational database can be browsed and queried like any other Linked Data source.

Since practically all relevant data in Bolton are in a range of relational databases, we’re expecting to use D2R to create RDF data dumps that will be imported into the data warehouse via a script. For a quick start, though, we’ve already made some transforms with Refine. We might also use scripts such as Oxford’s XCRI XML to RDF transform.

Storage, querying and visualisation

Callimachus project logo

We expected to pick different tools for each of these functions, but ended up choosing one, that does it all- after a fashion. Callimachus is designed specifically for rapid development of LED applications, and the standard download includes a version of the Sesame triplestore (or RDF database) for storage. Other triple stores can also be used with Callimachus, but Sesame was on the list anyway, so we’ll see how far that takes us.

Callimachus itself is more of a web application on top that allows quick visualisations of data excerpts- be they straight records of one dataset or a collection of data about one thing from multiple sets. The queries that power the Callimachus visualisations have limitations – compared to the full power of SPARQL, the linked data query language – but are good enough to knock up some pages quickly. For the more involved visualisations, Callimachus SPARQL 1.1 implementation allows the results a query to be put out as common or garden JSON, for which many different tools exist.

Next steps

We’ve made some templates already that pull together course information from a variety of sources, on which I’ll report later. While that’s going on, the main other task will be to set up the processes of extracting data from the relational databases using D2R, and then loading it into Callimachus using timed scripts.

VLE commodification is complete as Blackboard starts supporting Moodle and Sakai

Unthinkable a couple of years ago, and it still feels a bit April 1st: Blackboard has taken over the Moodlerooms and NetSpot Moodle support companies in the US and Australia. Arguably as important is that they have also taken on Sakai and IMS luminary Charles Severance to head up Sakai development within Blackboard’s new Open Source Services department. The life of the Angel VLE Blackboard acquired a while ago has also been extended.

For those of us who saw Blackboard’s aggressive acquisition of commercial competitors WebCT and Angel, and seen the patent litigation they unleashed against Desire 2 Learn, the idea of Blackboard pledging to be a good open source citizen may seem a bit … unsettling, if not 1984ish.

But it has been clear for a while that Blackboard’s old strategy of ‘owning the market’ just wasn’t going to work. Whatever the unique features are that Blackboard has over Moodle and Sakai, they aren’t enough to convince every institution to pay for the license. Choosing between VLEs was largely about price and service, not functionality. Even for those institutions where price and service were not an issue, many departments had sometimes not entirely functional reasons for sticking with one or another VLE that wasn’t Blackboard.

In other words, the VLE had become a commodity. Everyone needs one, and they are fairly predictable in their functionality, and there is not that much between them, much as I’ve outlined in the past.

So it seems Blackboard have wisely decided to switch focus from charging for IP to becoming a provider of learning tool services. As Blackboard’s George Kroner noted, “It does kinda feel like @Blackboard is becoming a services company a la IBM under Gerstner

And just as IBM has become quite a champion of Open Source Software, there is no reason to believe that Blackboard will be any different. Even if only because the projects will not go away, whatever they do to the support companies they have just taken over. Besides, ‘open’ matters to the education sector.

Interoperability

Blackboard had already abandoned extreme lock-in by investing quite a bit in open interoperability standards, mostly through the IMS specifications. That is, users of the latest versions of Blackboard can get their data, content and external tool connections out more easily than in the past- it’s no longer as much of a reason to stick with them.

Providing services across the vast majority of VLEs (outside of continental Europe at least) means that Blackboard has even more of an incentive to make interoperability work across them all. Dr Chuck Severance’s appointment also strongly hints at that.

This might need a bit of watching. Even though the very different codebases, and a vested interest in openness, means that Blackboard sponsored interoperability solutions – whether arrived at through IMS or not – are likely to be applicable to other tools, this is not guaranteed. There might be a temptation to cut corners to make things work quickly between just Blackboard Learn, Angel, Moodle 1.9/2.x and Sakai 2.x.

On the other hand, the more pressing interoperability problems are not so much between the commodified VLEs anymore, they are between VLEs and external learning tools and administrative systems. And making that work may just have become much easier.

The Blackboard press releases on Blackboard’s website.
Dr Chuck Severance’s post on his new role.

Approaches to building interoperability and their pros and cons

System A needs to talk to System B. Standards are the ideal to achieve that, but pragmatics often dictate otherwise. Let’s have a look at what approaches there are, and their pros and cons.

When I looked at the general area of interoperability a while ago, I observed that useful technology becomes ubiquitous and predictable enough over time for the interoperability problem to go away. The route to get to such commodification is largely down to which party – vendors, customers, domain representatives – is most powerful and what their interests are. Which describes the process very nicely, but doesn’t help solve the problem of connecting stuff now.

So I thought I’d try to list what the choices are, and what their main pros and cons are:

A priori, global
Also known as de jure standardisation. Experts, user representatives and possibly vendor representatives get together to codify whole or part of a service interface between systems that are emerging or don’t exist yet; it can concern either the syntax, semantics or transport of data. Intended to facilitate the building of innovative systems.
Pros:

  • Has the potential to save a lot of money and time in systems development
  • Facilitates easy, cheap integration
  • Facilitates structured management of network over time

Cons:

  • Viability depends on the business model of all relevant vendors
  • Fairly unlikely to fit either actually available data or integration needs very well

A priori, local
i.e. some type of Service Oriented Architecture (SOA). Local experts design an architecture that codifies syntax, semantics and operations into services. Usually built into agents that connect to each other via an ESB.
Pros:

  • Can be tuned for locally available data and to meet local needs
  • Facilitates structured management of network over time
  • Speeds up changes in the network (relative to ad hoc, local)

Cons:

  • Requires major and continuous governance effort
  • Requires upfront investment
  • Integration of a new system still takes time and effort

Ad hoc, local
Custom integration of whatever is on an institution’s network by the institution’s experts in order to solve a pressing problem. Usually built on top of existing systems using whichever technology is to hand.
Pros:

  • Solves the problem of the problem owner fastest in the here and now.
  • Results accurately reflect the data that is actually there, and the solutions that are really needed

Cons:

  • Non-transferable beyond local network
  • Needs to be redone every time something changes on the local network (considerable friction and cost for new integrations)
  • Can create hard to manage complexity

Ad hoc, global
Custom integration between two separate systems, done by one or both vendors. Usually built as a separate feature or piece of software on top of an existing system.
Pros:

  • Fast point-to-point integration
  • Reasonable to expect upgrades for future changes

Cons:

  • Depends on business relations between vendors
  • Increases vendor lock-in
  • Can create hard to manage complexity locally
  • May not meet all needs, particularly cross-system BI

Post hoc, global
Also known as standardisation, consortium style. Service provider and consumer vendors get together to codify a whole service interface between existing systems; syntax, semantics, transport. The resulting specs usually get built into systems.
Pros:

  • Facilitates easy, cheap integration
  • Facilitates structured management of network over time

Cons:

  • Takes a long time to start, and is slow to adapt
  • Depends on business model of all relevant vendors
  • Liable to fit either available data or integration needs poorly

Clearly, no approach offers instant nirvana, but it does make me wonder whether there are ways of combining approaches such that we can connect short term gain with long term goals. I suspect if we could close-couple what we learn from ad hoc, local integration solutions to the design of post-hoc, global solutions, we could improve both approaches.

Let me know if I missed anything!

PROD; a practical case for Linked Data

Georgi wanted to know what problem Linked Data solves. Mapman wanted a list of all UK universities and colleges with postcodes. David needed a map of JISC Flexible Service Delivery projects that use Archimate. David Sherlock and I got mashing.

Linked Data, because of its association with Linked Open Data, is often presented as an altruistic activity, all about opening up public data and making it re-usable for the benefit of mankind, or at least the tax-payers who facilitated its creation. Those are a very valid reasons, but they tend to obscure the fact that there are some sound selfish reasons for getting into the web of data as well.

In our case, we have a database of JISC projects and their doings called PROD. It focusses on what JISC-CETIS focusses on: what technologies have been used by these projects, and what for. We also have some information on who was involved with the projects, and were they worked, but it doesn’t go much beyond bare names.

In practice, many interesting questions require more information than that. David’s need to present a map of JISC Flexible Service Delivery projects that use Archimate is one of those.

This presents us with a dilemma: we can either keep adding more info to PROD, make ad-hoc mash-ups, or play in the Linked Data area.

The trouble with adding more data is that there is an unending amount of interesting data that we could add, if we had infinite resources to collect and maintain it. Which we don’t. Fortunately, other people make it their business to collect and publish such data, so you can usually string something together on the spot. That gets you far enough in many cases, but it is limited by having to start from scratch for virtually every mashup.

Which is where Linked Data comes in: it allows you to link into the information you want but don’t have.

For David’s question, the information we want is about the geographical position of institutions. Easily the best source for that info and much more besides is the dataset held by the JISC’s Monitoring Unit. Now this dataset is not available as Linked Data yet, but one other part of the Linked Data case is that it’s pretty easy to convert a wide variety of data into RDF. Especially when it is as nicely modelled as the JISC MU’s XML.

All universities with JISC Flexible Delivery projects that use Archimate. Click for the google map

All universities with JISC Flexible Delivery projects that use Archimate. Click for the google map

Having done this once, answering David’s question was trivial. Not just that, answering Mapmans’ interesting question on a list of UK universities of colleges with postcodes was a piece of cake too. That answer prompted Scott and Tony’s question on mapping UCAS and HESA codes, which was another five second job. As was my idle wonder whether JISC projects by Russell group universities used Moodle more or less than those led by post ’92 institutions (answer: yes, they use it more).

Russell group led JISC projects with and without Moodle

Russell group led JISC projects with and without Moodle

Post 92 led JISC projects with or without Moodle

Post '92 led JISC projects with or without Moodle

And it doesn’t need to stop there. I know about interesting datasets from UKOLN and OSSWatch that I’d like to link into. Links from the PROD data to the goodness of Freebase.com and dbpedia.org already exist, as do links to MIMAS’ names project. And each time such a link is made, everyone else (including ourselves!) can build on top of what has already been done.

This is not to say that creating Linked Data out of PROD was for free, nor that no effort is involved in linking datasets. It’s just that the effort seems less than with other technologies, and the return considerably more.

Linked Data also doesn’t make your data automatically usable in all circumstances or bug free. David, for example, expected to see institutions on the map that do use the Archimate standard, but not necessarily as a part of a JISC project. A valid point, and a potential improvement for the PROD dataset. It may also have never come to light if we hadn’t been able to slice and dice our data so readily.

An outline with recipes and ingredients is to follow.

Bare bones TOGAF

Do stakeholder analysis. Cuddle the uninterested powerful ones, forget about the enthusiasts without power. Agree goal. Deliver implementable roadmap. The rest is just nice-to-have.

That was one message from today’s slot on The Open Group’s Architecture Framework (TOGAF) at the Open Group’s quarterly meeting in Amsterdam. In one session, two self-described “evil consultants” ran a workshop on how to extract most value from an Enterprise Architecture (EA) to institutional change.

While they agreed about the undivided primacy of keeping the people with power happy when doing EA, the rest of their approach differed more markedly.

Dave Hornford zero-ed in mercilessly on the do-able roadmap as the centre of the practice. But before that, find those all-powerful stakeholders and get them to agree on the organisational vision and its goal. If there is no agreement: celebrate. You’ve just saved the organised an awful lot of money in an expensive and unimplementable EA venture.

Once past that hurdle, Dave contended that the roadmap should identify what the organisation really needs – which may not always be sensible or pretty.

Jason Uppal took a slightly wider view, by focussing on the balance between quick wins and how to EA the norm in an organisation.

The point about ‘quick wins’ is that both ‘quick’ and ‘win’ are relative. It is possible to go after a long term value proposition with a particular change, as long as you have a series of interim solutions that provide value now. Even if you throw them away again later. And the first should preferably have no cost.

That way, EA can become part of the organisation’s practice: by providing value. This does pre-suppose that the EA practice is neither a project, nor a programme- just a practice.

An outline of the talks on the Open Group’s website

IMS Question and Test Interoperability 2.1 tools demonstrate interoperability

While most of Europe was on the beach, a dedicated group of QTI vendors gathered in Koblenz, Germany to demo what a standard should do: enable interoperability between a variety of software tools.

A total of twelve tools were demonstrated for the attendees of the IMS quarterly meeting that was being held at the University of Koblenz-Landau. The vendors and projects ranged from a variety of different communities in Poland, Korea, France, Germany and the UK, and their tools included:

All other things being equal, the combination of such a diversity of purposes with the comprehensive expressiveness of QTI, means that there is every chance that a set of twelve tools will implement different, non-overlapping subsets of the specification. This is why the QTI working group is currently working on the definition of two profiles: CC (Common Cartridge) QTI and what is provisionally called the Main profile.

The CC QTI profile is very simple and follows the functionality of the QTI 1.2 profile that is currently used in the IMS Common Cartridge educational content exchange format. Nine out of the twelve tools had implemented that profile, and they all happily played, edited or validated the CC QTI reference test.

With that milestone, the group is well on the way to the final, public release of the QTI 2.1 specification. Most of the remaining work is around the definition of the Main profile.

Initial discussion in Koblenz suggested an approach that encompasses most of the specification, with the possible exclusion of some parts that are of interest to some, but not all subjects or communities. To make sure the profile is adequate and implementable, more input is sought from publishers, qualification authorities and others with large collections of question and test items. Fortunately, a number of these have already come forward.

How to meshup eportfolios, learning outcomes and learning resources using Linked Data, and why

After a good session with the folks from the Achievement Standards Network (ASN), and earlier discussions with Link Affiliates, I could see the potential of linking LEAP2a portfolios with ASN curriculum information and learning resources. So I implemented a proof of concept.

Fortunately, almost all the information required is already available as RDF: the ASN makes its machine readable curricula available in that format, and Zotero (my bibliography tool of choice) happily puts out its data in RDF too. What still needed to be done was the ability to turn LEAP2a eportfolios into RDF.

That took some doing, but since LEAP2a is built around the IETF Atom newsfeed format, there were at least some existing XSL transformations to build on. I settled on the one included in the open source OpenLink Virtuoso data management server, since that’s what I used for the subsequent Linked Data meshing too. Also, the OpenLink Virtuoso Atom-to-RDF XSLT came out of their ‘sponger’ middleware layer, which allows you to treat all kinds of structured data as if they were RDF datasources. That means that it ought to be possible to built a wee LEAP2a sponger cartridge around my leap2rdf.xslt, which then allows OpenLink Virtuoso to treat any LEAP2a portfolio as RDF.

The result still has limitations: the leap2rdf.xslt only works on LEAP2a records with the new, proper namespace, and it only works well on those records that use URIs, but not those that use Compact URIs (CURIEs). Fixing these things is perfectly possible, but would take two or three more days that I didn’t have.

So, having spotted my ponds of RDF triples and filled one up, it’s time to go fishing. But for what and why?

Nigel Ward and Nick Nicholas of Link Affiliates have done an excellent job in explaining the why of machine readable curriculum data, so I’ve taken the immediate advantages that they identified, and illustrated them with noddy proof-of-concept hows:

1. Learning resources can be easily and unambiguously tagged with relevant learning outcomes.
For this one, I made a query that looks up a work (Robinson Crusoe) in my Zotero bibliographic database and gets a download link for it, then checks whether the work supports any known learning outcomes (in my own 6-lines-of-RDF repository), and then gets a description of that learning outcome from the ASN. You can see the results in CSV.

It ought to have been possible to use a bookmarking service for the learning resource to learning outcome mapping, but hand writing the equivalent of

‘this book’ ‘aligns to’ ‘that learning outcome’

seemed easier :-)

2. A student’s progress can be easily and unambiguously mapped to the curriculum.
To illustrate this one, I’ve taken Theophilus Thistledown’s LEAP2a example portfolio, and added some semi-appropriate Californian K-12 learning outcomes from the ASN against the activities Theophilus recorded in his portfolio. (Anyone can add such ASN statements very easily and legally within the scope of the LEAP2a specification, by the way) I then RDFised the lot with my leap2rdf XSLT.

I queried the resulting RDF portfolio to see what learning outcomes were supported by one particular learning activity, and I then got descriptions of each of these learning outcomes from the ASN, and also got a list of other learning outcomes that belong to the same curriculum standard. That is, related learning outcomes that Theophilus could still work on. This is what the SPARQL looks like, and the results can be seen here. Beware that a table is not the most helpful way of presenting this information- a line and a list would be better.

3. Lesson plans and learning paths to be easily and unambiguously mapped to the curriculum.
This is what I think of as the classic case: I’ve taken an RDFised, ASN enhanced LEAP2a eportfolio, and looked for the portfolio owner’s name, any relevant activities that had a learning outcome mapped against them, then fished out the identifier of that learning outcome and a description of same from the ASN. Here’s the SPARQL, and there’s the result in CSV.

Together, these give a fairly good of what Robinson Crusoe was up to, according to the Californian K-12 curriculum, and gives a springboard for further exploration of things like comparison of the learning outcomes he aimed for then with later statements of the same outcome or the links between the Californian outcomes with those of other jurisdictions.

4. The curriculum can drive content discovery: teachers and learners want to find online resources matching particular curriculum outcomes they are teaching.
While sitting behind his laptop, Robinson might be wondering whether he can get hold of some good learning resources for the learning activities he’s busy with. This query will look at his portfolio for activities with ASN learning outcomes and check those outcomes against the outcome-to-resource mapping repository I mentioned earlier. It will then look up some more information about the resources from the Zotero bibliographic database, including a download link- like so

The nice thing is that this approach should scale up nicely all the way from my six lines of RDF to a proper repository.

5. Other e-learning applications can be configured to use the curriculum structure to share information.
A nice and simple example could be a tool that lets you discover other learners with the same learning outcome as a goal in their portfolio. This sample query looks through both Theophilus and Robinson’s eportfolios, identifies any ASN learning outcomes they have in common, and then gets some descriptions of that outcome from the ASN, with this result.

Lessons learned

Of all the steps in this and other meshups, deriving decent RDF from XML is easily the hardest and most time consuming. Deriving RDF from spreadsheets or databases seems much easier, and once you have all your source data in RDF, the rest is easy.

Even using the distributed graph pattern I described in a previous post, querying across several datasets can still be a bit slow and cumbersome. As you may have noticed if you follow the sample query links, uriburner.com (the hosted version of OpenLink Virtuoso) will take it’s time in responding to a query if it hasn’t got a copy of all relevant datasets downloaded, parsed and stored. Using a SPARQL endpoint on your own machine clearly makes a lot of sense.

Perhaps more importantly, all the advantages of machine readable curricula that Nigel and Nick outlined are pretty easily achievable. The queries and the basic tables they produce took me one evening. The more long term advantages Nigel and Nick point out – persistence of curricula, mapping different curricula to each other, and dealing with differences in learning outcome scope – are all equally do-able using the linked data stack.

Most importantly, though, are the meshups that no-one has dreamed of yet.

What’s next

For other people to start coming up with those meshups, though, some further development needs to happen. For one, the leap2rdf.xslt needs to deal with a greater variety of LEAP2a eportfolios. A bookmark service that lets you assert simple triples with tags, and expose those triples as RDF with URIs (rather than just strings) would be great. The query results could look a bit nicer too.

The bigger deal is the data: we need more eportfolios to be available in either LEAP2a or LEAP2r formats as a matter of course, and more curricula need be described using the ASN.

Beyond that, the trickier question is who will do the SPARQL querying and how. My sense is that the likeliest solution is for people to interact with the results of pre-fabbed SPARQL queries, which they can manipulate a bit using one or two parameters via some nice menus. Perhaps all that the learners, teachers, employers and others will really notice is more relevant, comprehensive and precisely tailored information in convenient websites or eportfolio systems.

Resources

The leap2rdf.xslt is also available here. Please be patient with its many flaws- improvements are very welcome.